Abstract

Upon storage, human erythrocyte phosphoribosyl pyrophosphate synthetase (PRibPP synthetase, EC 2.7.6.1) from normal individuals was found to undergo a spontaneous dissociation into active enzyme components of much smaller molecular mass (60 000--90 000). These modified forms of enzyme exhibit kinetic properties different from the original large molecular weight enzyme (over 200 000). The small active components can be reversibly associated to form larger molecules in the presence of purine ribonucleotides as well as phosphoribosyl pyrophosphate (PRibPP). ATP was found to be most effective in associating PRibPP synthetase, while guanylate nucleotides seem to have no effect. The large molecular weight components, once separated from the milieu, were not able to undergo further dissociation. Fresh or stored human white cell tissue homogenates were found to lack the low-molecular-weight enzyme under all our experimental conditions. A characteristic enzyme modification similar to that observed in stored erythrocyte was also noted in erythrocytes of increasing ages. The physiological significance of these findings to the regulatory function of PRibPP synthetase in purine metabolism in vivo is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call