Abstract

Refractory infection caused by bacterial biofilm is an important clinical problem. Pseudomonas aeruginosa is a common pathogen responsible for persistent and chronic biofilm infections. We aimed to explore the in vitro and in vivo activity of ethylenediamine tetraacetic acid (EDTA) in combination with antibacterial agents against mucoid P. aeruginosa biofilm. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration of ciprofloxacin, gentamicin, and ampicillin alone or with EDTA against P. aeruginosa were determined in vitro. Extracellular polysaccharides (EPS) and structural parameters of the biofilm were monitored. P. aeruginosa was aerosolized and delivered into the lungs of guinea pigs, which were treated with ciprofloxacin with or without EDTA. The colony-forming units (CFUs) of P. aeruginosa were determined from the lungs. EDTA reduced the MIC of ciprofloxacin and ampicillin by about 30-fold and that of gentamicin by twofold. EDTA reduced the biofilm EPS and the proportion of viable bacteria. The thickness, average diffusion distance, and textural entropy of EDTA-treated biofilm were significantly decreased. EDTA plus antibiotics reduced the colony counting from 107 to 103CFU/mL. In vivo, EDTA plus ciprofloxacin had a significantly lower mean CFU/g of lung tissue (EDTA+ciprofloxacin 1.3±0.19; EDTA 4.4±0.57; ciprofloxacin 4.2±0.47), and lung lesions were less severe compared with the single treatment groups. EDTA can destroy the biofilm structures of mucoid P. aeruginosa in vitro. Moreover, EDTA and ciprofloxacin had a significant bactericidal effect against biofilm in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.