Abstract

The study aimed to validate the folkloric medicinal uses of Viburnum grandiflorum. The column chromatography led to the isolation of a compound from the chloroform soluble fraction of V. grandiflorum which was characterized as 2, 3-dihydro-2-(4ʹ-hydroxy, 3ʹ-methoxyphenyl)-3-hydroxymethyl-5-(2-formylvinyl) 7-hydroxybenzofuran (benzofuran) on the basis of various spectroscopic techniques. When benzofuran was studied for xanthine oxidase inhibition, it caused significant concentration dependent inhibition of the enzyme with IC50: 49.52 µM, however, it was found less potent than standard xanthine inhibitor allopurinol (IC50: 0.59 µM). Binding orientation and binding energy of benzofuran and allopurinol were predicted via docking studies. Docking simulations revealed that both studied molecules interact with key amino acid residues through hydrogen bond (Arg 880, Glu 1261, Thr1010 with Allopurinol & Thr 1010 with benzofuran) and hydrophobic interactions (Phe914, Phe1009 with Allopurinol & Phe 910, Phe 1009 with benzofuran). A fair correlation between the computed binding energy and experimental values was observed. Thus, it is concluded that the isolated compound, benzofuran had inhibition on xanthine oxidase, need further detail studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call