Abstract
Plant-derived antioxidants are a large group of natural products with the capacity to reduce radical-scavenging. Due to their potent therapeutic and preventive actions, these compounds receive a lot of attention from scientists, particularly pharmacologists. The pharmacological activities of the Azima tetracantha Lam. (AT) plant, belonging to the Salvadoraceae family, reported here justifies its traditional use in treating several diseases or disorders. This study aims to look at the propensity of certain plant compounds found in natural AT plant extracts that might play a critical role as a secondary metabolite in cervical cancer treatment. There is a shortage of information on the plant’s phytochemical and biological characteristics. Methanol (MeOH) solvent extracts of the dried AT plant were screened phytochemically. Its aqueous extract was tested for antioxidant, antiseptic, anti-inflammatory, and anticancerous properties. Absorption Distribution Metabolism and Excretion (ADME/T), Docking, and HPLC were also performed. In clinical treatment, the plant shown no adverse effects. The antioxidant activity was evaluated and showed the highest concentration at 150 µg/mL (63.50%). MeOH leaf extract of AT exhibited the highest and best inhibitory activity against Staphylococcus aureus (15.3 mm/1000) and displayed a high antiseptic potential. At a 200 µg/mL concentration, MeOH leaves-extract inhibited red blood cells (RBC) hemolysis by 66.56 ± 0.40, compared with 62.33 ± 0.40 from the standard. Albumin’s ability to suppress protein denaturation ranged from 16.75 ± 0.65 to 62.35 ± 0.20 inhibitions in this test, providing even more support for its favorable anti-inflammatory properties. The ADME/T studies were considered for a potential cancer drug molecule, and one of our compounds from MeOH extract fills the ADME and toxicity parameters. The forms of compound 4 showed a strong hydrogen-bonding interaction with the vital amino acids (ASN923, THR410, LEU840TRY927, PHE921, and GLY922). A total of 90% of cell inhibition was observed when HeLa cell lines were treated with 300 µg/mL of compound 4 (7-acetyl-3a1-methyl- 4,14-dioxo-1,2,3a,3a1,4,5,5a,6,8a,9b,10,11,11a-tetradecahydro-2,5a epoxy5,6a (methanooxymethano)phenaleno[1′,9′:5,6,7]indeno[1,7a-b]oxiren-2-yl acetate). The polyphenol compounds demonstrated significant advances in anticancer drug properties, and it could lead to activation of cancer cell apoptosis.
Highlights
There is a dynamic balance between the number of free radicals produced in the body and the antioxidants to scavenge or quench them for the body’s protection against harmful effects [1]
The antioxidant activity of Azima tetracantha was determined by its DPPH free-radicalscavenging ability
The highest concentration was found at 150 μg/mL (63.50%), which was followed by 50 μg/mL (22.11%) as sample inhibition values, and the highest concentration of standard was 50 μg/mL (68.35%) and the lowest was 50 μg/mL (26.50%)
Summary
There is a dynamic balance between the number of free radicals produced in the body and the antioxidants to scavenge or quench them for the body’s protection against harmful effects [1]. Antioxidant components in plants are derived from constituent nutrients with a proven radical-scavenging property. Some plants or combinations of herbs may function as antioxidants by scavenging superoxide or boosting superoxide dismutase activity at different tissue regions [2]. The increasing percentage of infectious rehabilitation of clinical agents and their effect on managing contagious diseases have started to present an extraordinary health challenge [3]. The reality is that many antiseptic agents are often produced through differing pathways and may produce transmutations that cause the resistance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.