Abstract

The incorporation of edible flowers in the human diet and culinary preparations dates back to ancient times. Nowadays, edible flowers have gained great attention due to their health-promoting and nutritive effects and their widespread acceptance by consumers. Therefore, edible flowers are ideal candidates for use in the design and development of functional foods and dietary supplements, representing a new and promising trend in the food industry. Thus, the present study attempts to assess the potential of various edible flowers against oxidative stress by applying a combination of in vitro, in silico and spectroscopic techniques. Specifically, the spectroscopic profiles of edible flower extracts were evaluated using ATR-FTIR spectroscopy, while their total phenolic contents and antioxidant/antiradical activities were determined spectrophotometrically. The most abundant phytochemicals in the studied flowers were examined as enzyme inhibitors through molecular docking studies over targets that mediate antioxidant mechanisms in vivo. Based on the results, the red China rose followed by the orange Mexican marigold exhibited the highest TPCs and antioxidant activities. All samples showed the characteristic FTIR band of the skeletal vibration of phenolic aromatic rings. Phenolic compounds seem to exhibit antioxidant activity with respect to NADPH oxidase, myeloperoxidase (MP), cytochrome P450 and, to a lesser extent, xanthine oxidase (XO) enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call