Abstract

Yeast iso-1-cytochrome c (y-cyt-c) has five extra residues at N-terminus in comparison to the horse cytochrome c. These residues are numbered as –5 to –1. Here, these extra residues are sequentially removed from y-cyt-c to establish their role in folding and stability of the protein. We performed urea-induced denaturation of wild-type (WT) y-cyt-c and its deletants. Denaturation was followed by observing change in Δε405 (probe for measuring change in the heme environment within the protein), [θ]405 (probe for measuring the change in Phe82 and Met80 axial bonding), [θ]222 (probe for measuring change in secondary structure) and [θ]416 (probe for measuring change in the heme-methionine environment). The urea-induced reversible denaturation curves were used to estimate Δ, the value of Gibbs free energy change (ΔGD) in the absence of urea; Cm, the midpoint of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Our in vitro results clearly show that except Δ(–5/–4) all deletants are less stable than WT protein. Coincidence of normalized transition curves of all physical properties suggests that unfolding/refolding of WT protein and its deletants is a two-state process. To confirm our in vitro observations, we performed 40 ns MD simulation of both WT y-cyt-c and its deletants. MD simulation results clearly show that extra N-terminal residues play a role in stability but not in folding of the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.