Abstract

Microbial phosphatase activity can trigger the precipitation of metal-phosphate minerals, a process called phosphatogenesis with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link the functional properties of genomic repertoires of phosphatases with the phosphatogenesis capabilities of microorganisms. Here, we studied the betaproteobacterium Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. We investigated the functional repertoire of this biomineralization process at the cell, genome and molecular level. Based on a mineralization assay, Rta is shown to hydrolyse the phosphoester bonds of a wide range of organic P molecules. Accordingly, its genome has an unusually high diversity of phosphatases: five genes belonging to two non-homologous families, phoD and phoX, were detected. These genes showed diverse predicted cis-regulatory elements. Moreover, they encoded proteins with diverse structural properties according to molecular models. Heterologously expressed PhoD and PhoX in Escherichia coli had different profiles of substrate hydrolysis. As evidenced for Rta cells, recombinant E. coli cells induced the precipitation of Ca-phosphate mineral phases, identified as poorly crystalline hydroxyapatite. The phosphatase genomic repertoire of Rta (containing phosphatases of both the PhoD and PhoX families) was previously evidenced as prevalent in marine oligotrophic environments. Interestingly, the Tataouine sand from which Rta was isolated showed similar P-depleted, but Ca-rich conditions. Overall, the diversity of phosphatases in Rta allows the hydrolysis of a broad range of organic P substrates and therefore the release of orthophosphates (inorganic phosphate) under diverse trophic conditions. Since the release of orthophosphates is key to the achievement of high saturation levels with respect to hydroxyapatite and the induction of phosphatogenesis, Rta appears as a particularly efficient driver of this process as shown experimentally.

Highlights

  • Phosphorus is essential to life but a limiting nutrient in many ecosystems (Paytan and McLaughlin, 2007; Pasek, 2008)

  • Ramlibacter tataouinensis strain TTB310 (Rta) cells were suspended in three different media (CaGP, NaGP, or NaGP+Ca) at a pH of 7.5 with glycerophosphate (GP) as a sole source of phosphorus

  • The increase of Pi concentration was higher for Rta cells and Rta extracellular fraction incubated in the presence of calcium (CaGP and NaGP+Ca, Figures 1A,C) than without Ca (NaGP, Figure 1E), at least for the 9 first days

Read more

Summary

Introduction

Phosphorus is essential to life but a limiting nutrient in many ecosystems (Paytan and McLaughlin, 2007; Pasek, 2008). Several types of phosphatases are known, including the alkaline phosphatase superfamily (Coleman, 1992) composed of at least 3 non-homologous families named PhoA, PhoD, and PhoX (Kim and Wyckoff, 1991; Rodriguez et al, 2014; Yong et al, 2014) This superfamily exhibits a broad diversity in (1) substrate specificity profile: for example, some proteins hydrolyze phosphate monoesters such as glycerophosphate or phosphoproteins, while other are more efficient at hydrolyzing phosphate diesters such as nucleic acids; (2) cofactors such as Zn2+, Ca2+, Mg2+, Fe3+; (3) cellular location; and (4) regulation pathways (Eder et al, 1996; Wojciechowski et al, 2002; Zalatan et al, 2006; Zaheer et al, 2009).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.