Abstract
Isoflavonoids with various structural elements show a promising potential effect on central nervous system activities. Despite their favorable medicinal properties, the pharmacokinetic characteristics of this thoroughly investigated group of natural phenolics have only been described to a limited extent. Regarding the lack of information about the BBB permeability of isoflavones, isoflavanones, and pterocarpans found in Ononis species, the aim of our study was to investigate their physico-chemical properties influencing their absorption and distribution. Furthermore, we aimed to characterize the possible MAO-B inhibiting features of Ononis isoflavonoids in silico. Octanol-water partitioning and BBB-PAMPA permeability of formononetin, calycosin D, onogenin, sativanone, medicarpin and maackiain were assessed for the first time in our study. The log P values ranged from 2.21 to 3.03 and log D7.4 values from 2.48 to 3.03, respectively, indicating optimal polarity for BBB permeation. The results of PAMPA-BBB expressed as log Pe values fell between -5.60 and -4.45, predicting their good permeation capability as well. The effective permeability values showed structure-dependent differences, indicating that the pterocarpan type skeleton was the most preferred type, followed by isoflavanones, then isoflavones. The methoxy or methylenedioxy substitution of the same skeleton did not influence the permeability significantly, contrary to an additional hydroxyl group. Membrane retention showed a similar structure dependent pattern to that of effective permeability, ranging from 16% to 70%. For the identification of volumes of chemical space related to particular biological activities the ChemGPS-NP framework was used. The MAO-B inhibitory potency and selectivity were also predicted and validated. Based on our results, MAO-B inhibitory potency could be predicted with good precision, but in the case of selectivity, only the direction could be concluded (favors MAO-B or MAO-A), not the magnitude. Our finding reflects that Ononis isoflavonoid aglycones show an excellent fit with the suggested parameters for BBB permeability and this is the first study to confirm the highly favorable position of these natural products for MAO-B inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.