Abstract

In the aftermath of the Great East Japan Earthquake of March 11, 2011, marine fish in Kesennuma Bay, Japan, have been contaminated with heavy oil containing polycyclic aromatic hydrocarbons (PAHs). To estimate the risk of six PAHs (benzo[α]pyrene, dibenzothiophene, phenanthrene, 2,3,5-trimethylnaphthalene, acenaphthene, and 1-methylphenanthrene), which have been detected at high levels in the tissues of fish from Kesennuma Bay, we attempted to evaluate the effects of these PAHs on the fish aryl hydrocarbon receptor (AHR) signaling pathway. We initially measured PAH concentrations and cytochrome P4501A catalytic activities (EROD: ethoxyresorufin-O-deethylase and MROD: methoxyresorufin-O-demethylase) as markers of AHR activation in greenlings (Hexagrammos otakii) collected from Kesennuma Bay in 2014. The results showed that alkylated PAH concentrations and EROD/MROD activities were higher in sites close to the oil-spilled sites than in the control site, suggesting AHR activation by spilled alkylated PAHs. We then investigated AHR-mediated responses to these PAHs in the in vitro reporter gene assay system where red seabream (Pagrus major) AHR1 (rsAHR1) or rsAHR2 expression plasmids were transiently transfected into COS-7 cells. The in vitro assay showed rsAHR isoform-, PAH-, and dose-dependent transactivation potencies. The relative effective concentrations of benzo[α]pyrene, dibenzothiophene, phenanthrene, 2,3,5-trimethylnaphthalene, acenaphthene, and 1-methylphenanthrene that induce 20% of the maximum benzo[α]pyrene response (REC20-BaP) for rsAHR1 activation were 0.052, 38, 79, 88, 270 nM, and no response, respectively, and those for rsAHR2 activation were 0.0049, 32, 53, 88, 60 nM, and no response, respectively. The results showed that the REC20-BaP values of benzo[α]pyrene for both the rsAHR1 and rsAHR2 isoforms were lower than the concentrations (0.041–0.20 nM) detected in the muscle tissue of fish from Kesennuma Bay, while the REC20-BaP values of other PAHs were higher than their tissue concentrations. In silico rsAHR homology modeling and subsequent ligand docking simulation analyses indicated that the rsAHR activation potencies of PAHs could be predicted from a rsAHR2 model. This study shows that in vitro and in silico rsAHR analyses may be a useful tool for assessing the risks to fish contaminated with PAHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call