Abstract

The use of metal oxide nanoparticles has attracted lots of attention, mostly because of their promising antimicrobial activity along with their biocompatibility with mammalian cells. This study aims to investigate the in vitro and ex vivo antimicrobial efficiency of nano-magnesium oxide (MgO) aqueous solution against endodontic pathogens. The cytotoxicity of different concentrations of nano-MgO was assessed using lactate dehydrogenase cytotoxicity assay (LDH assay). A comparison of the antimicrobial efficiency of several concentrations of nano-MgO solution, sodium hypochlorite (NaOCl), and chlorhexidine (CHX) gluconate against Staphylococcus aureus, Enterococcus faecalis, and Candida albicans was made using the direct contact method. An ex vivo model of decoronated and experimentally infected human teeth was employed to compare the efficiency of nano-MgO (5 mg/L) solution with NaOCl (5.25 %) in the elimination of E. faecalis. There was no statistically significant difference between nano-MgO solutions (10 and 5 mg/L), 5.25 % NaOCl, and 2 % CHX gluconate in terms of the required time to inhibit the growth of the tested pathogens (p > 0.05). The LDH assay showed no cytotoxicity of different concentrations of nano-MgO used in this study (p < 0.001). In the ex vivo model of infected human teeth, 6 h post-irrigation, there was no statistically significant difference between colony-forming units (CFU) per milliliter of nano-MgO (5 mg/L) and NaOCl (5.25 %)-treated teeth (5-6 log scale reduction). However, the nano-MgO group showed a significant decrease in colony-forming units per milliliter (7 log scale), 24 h post-irrigation (p < 0.05). At other tested time points-24, 48, 72, and 168 h-the levels of CFU per milliliter were significantly less in the nano-MgO group (2-3 log scale difference) compared to the NaOCl group, indicating long-term antibacterial activity of nano-MgO (p < 0.05). At 72 and 168 h post-irrigation, no detectable bacterial growth was observed in the nano-MgO group. The detection limit was 10 CFU/mL. Nano-MgO aqueous solutions represent promising antimicrobial activities, both in vitro and ex vivo with minimal toxicity. Compared to NaOCl (5.25 %), nano-MgO (5 mg/L) exhibits statistically significant long-term efficiency in the elimination of E. faecalis in the root canal system. After further investigations, nano-MgO could be considered as a new root canal irrigant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.