Abstract

HIV-2 resistance to integrase strand-transfer inhibitors (INSTIs) is characterized by two main pathways: (i) mutations at codons 143, 148 and155; and (ii) amino acid insertion after integrase codon 231 (231ins). To complete INSTI resistance data on HIV-2 by determining the viral replicative capacity and INSTI phenotypic susceptibility of integrase mutants obtained through site-directed mutagenesis. Site-directed mutants (SDMs) were constructed and viral stocks produced. Viral replicative capacity was assessed by measuring HIV-2 viral load at days 3, 7 and 14. In vitro phenotypic susceptibility was measured using the ANRS PBMC assay. Viruses bearing 231ins did not present impaired replicative capacity, except the 231ins GIRGK mutant. A 231ins GK SDM was resistant to raltegravir and cabotegravir, but remained susceptible to dolutegravir and bictegravir. SDMs harbouring a 5 amino acid insertion (GYKGK or SREGK) were both resistant to all INSTIs. The SDM with T97A+N155H, with or without E92Q, was resistant to all INSTIs, except bictegravir. These first data on the newly described resistance pathway 231ins, using site-directed mutagenesis, showed no measurable impact on viral fitness and confirmed the decreased susceptibility to a first-generation INSTI (raltegravir) and cabotegravir. Resistance to second-generation INSTIs (dolutegravir and bictegravir) occurred for mutants with a 5 amino acid 231ins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.