Abstract
Aim: To compare the fracture resistance and mode of failure of CAD-CAM monolithic lithium disilicate crowns with different occlusal thickness. Materials and methods: Thirty CAD-CAM monolithic lithium disilicate crowns with different occlusal thickness were randomly distributed into 3 experimental groups: 0.5 mm (group 1), 1.0 mm (group 2) and 1.5 mm (group 3). The restorations were cemented onto human molars with a self-adhesive resin cement. The specimens were loaded until fracture; the fracture resistance and mode of failure were recorded. The data were statistically analyzed with the one-way ANOVA followed by the Fisher’s Exact test with Bonferroni’s correction (p=0.05). Results: The fracture resistance values of all the specimens exceeded the maximum physiological occlusal loads in molar regions. The highest fracture resistance was noticed in 1.0 mm-thick crowns. Ultrathin restorations (group 1) proved to be statistically less resistant to fracture than those of the other experimental groups (p<0.05). The crowns were mainly interested by unrestorable fractures. Conclusions: The occlusal thickness of CAD-CAM monolithic lithium disilicate crowns influences either the fracture resistance and the mode of failure of the restorations; the occlusal thickness of such restorations can be reduced up to a lower bound of 1.0 mm in order to keep sufficient strength to withstand occlusal loads; CAD-CAM monolithic lithium disilicate crowns showed sufficient fracture resistance to be used in molar regions but not in an ultrathin configuration (0.5 mm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.