Abstract

Sympathetic neuron differentiation was studied using a fluorescence histochemical assay to detect the appearance of cell-bound catecholamines. Results from in vitro organ cultures indicate that chick neural crest cells must interact with both ventral neural tube (defined throughout as the ventral neural tube plus the notochord) and somitic mesenchyme in order to differentiate into sympathoblasts. Somite, ventral neural tube, and crest were cultured transfilter in various combinations to define these tissue interactions more precisely. Results from these experiments indicate that neural crest cells must be contiguous to somite in order to differentiate into sympathoblasts, but ventral neural tube may act across a Millipore filter membrane (type TH, 25 μm thick) either on somite, crest, or both. To distinguish among these possibilities, somite was cultured transfilter to ventral tube for a short period, after which ventral tube was removed and fresh crest was added to the somite. The results from this and other experiments support the hypothesis that the ventral tube does not act directly on crest cells, but elicits a developmental change in somitic mesenchyme, which then promotes sympathoblast differentiation. To study the relationship of nerve growth factor (NGF) to the differentiation of sympathetic neurons, cultures of somite + crest were temporarily exposed transfilter to ventral tube, in the presence or the absence of exogenous NGF. The results of these and other experiments are consistent with the hypothesis that the continued presence of ventral tube is required to ensure the survival of the differentiating sympathetic neurons. With respect to this second function, ventral tube can be replaced by exogenous NGF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call