Abstract
A publication reported that N-nitrosodimethylamine (NDMA), a probable human carcinogen, was formed when ranitidine and nitrite were added to simulated gastric fluid. However, the nitrite concentrations used were greater than the range detected in acidic gastric fluid in prior clinical studies. To characterize NDMA formation following the addition of ranitidine to simulated gastric fluid using combinations of fluid volume, pH levels, and nitrite concentrations, including physiologic levels. One 150-mg ranitidine tablet was added to 50 or 250 mL of simulated gastric fluid with a range of nitrite concentrations from the upper range of physiologic (100 μmol/L) to higher concentrations (10 000 μmol/L) with a range of pH levels. NDMA amounts were assessed with a liquid chromatography-mass spectrometry method. NDMA detected in simulated gastric fluid 2 hours after adding ranitidine. At a supraphysiologic nitrite concentration (ie, 10 000 μmol/L), the mean (SD) amount of NDMA detected in 50 mL simulated gastric fluid 2 hours after adding ranitidine increased from 222 (12) ng at pH 5 to 11 822 (434) ng at pH 1.2. Subsequent experiments with 50 mL of simulated gastric fluid at pH 1.2 with no added nitrite detected a mean (SD) of 22 (2) ng of NDMA, which is the background amount present in the ranitidine tablets. Similarly, at the upper range of physiologic nitrite (ie, 100 μmol/L) or at nitrite concentrations as much as 50-fold greater (1000 or 5000 μmol/L) only background mean (SD) amounts of NDMA were observed (21 [3] ng, 24 [2] ng, or 24 [3] ng, respectively). With 250 mL of simulated gastric fluid, no NDMA was detected at the upper physiologic range (100 μmol/L) or 10-fold physiologic (1000 μmol/L) nitrite concentrations, while NDMA was detected (mean [SD] level, 7353 [183] ng) at a 50-fold physiologic nitrite concentration (5000 μmol/L). In this in vitro study of ranitidine tablets added to simulated gastric fluid with different nitrite concentrations, ranitidine conversion to NDMA was not detected until nitrite was 5000 μmol/L, which is 50-fold greater than the upper range of physiologic gastric nitrite concentrations at acidic pH. These findings suggest that ranitidine is not converted to NDMA in gastric fluid at physiologic conditions.
Highlights
Ranitidine is a histamine[2] (H2) receptor antagonist that inhibits gastric parietal cell acid secretion for the treatment of gastroesophageal reflux and peptic ulcer disease.[1]
At a supraphysiologic nitrite concentration, the mean (SD) amount of NDMA detected in 50 mL simulated gastric fluid 2 hours after adding ranitidine increased from 222 (12) ng at pH 5 to 11 822 (434) ng at pH 1.2
In this in vitro study of ranitidine tablets added to simulated gastric fluid with different nitrite concentrations, ranitidine conversion to NDMA was not detected until nitrite was 5000 μmol/L, which is 50-fold greater than the upper range of physiologic gastric nitrite concentrations at acidic pH
Summary
Ranitidine is a histamine[2] (H2) receptor antagonist that inhibits gastric parietal cell acid secretion for the treatment of gastroesophageal reflux and peptic ulcer disease.[1]. Ranitidine was proposed to convert to NDMA in vivo, as described in an article by Braunstein et al titled “Analysis of Ranitidine-Associated N-Nitrosodimethylamine Production Under Simulated Physiologic Conditions.”[7] that article did not provide any justification for the physiologic relevance of the nitrite (NO2) concentrations studied (1000 to 50 000 μmol/L). The proposed mechanism for ranitidine[8] to form NDMA involves 2 separate nitrite-dependent steps, and the reaction rate for the second step is proportional to the concentration of the NDMA precursor dimethylamine and the square of the concentration of protonated nitrite.[9] pH level, ranitidine concentration, and nitrite concentration are key reaction conditions that will affect whether NDMA will be formed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.