Abstract

Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity.

Highlights

  • Breast cancer research relies heavily on functional assays provided by in vitro and in vivo models

  • NSA media consists of DMEM/F12 (Invitrogen) containing recombinant human epidermal growth factor (EGF; Sigma; 20 ng/mL), recombinant human basic fibroblast growth factor, heparin (Sigma; 4 mg/mL), human or mouse proliferation supplement (NeuroCultH; Stem Cell Technologies; 10%), bovine serum albumin (BSA; Sigma; 0.15%), and penicillin G-streptomycin solution (Gibco; 1%)

  • In order to better understand the biological significance of sphere formation and determine which features might predict for this ability, we tested the abilities of 24 breast cancer and 3 normal breast epithelial cell lines (HBL100, MCF10A, SVCT) to form spheres by seeding at low dilution into non-adherent conditions in serum-free media containing EGF and FGF

Read more

Summary

Introduction

Breast cancer research relies heavily on functional assays provided by in vitro and in vivo models. Candidate subpopulations of cancer stem cells (CSCs) can be purified using techniques such as fluorescence-activated cell sorting (FACS), assayed for stem cell-like properties using in vitro clonogenicity, tumoursphere formation and in vivo tumourigenicity assays [1,2,3,4,5,6] These are used to demonstrate key attributes of stem cells: self-renewal and multi-lineage potential, which in the case of CSCs infers the ability to recapitulate the heterogeneity of the original tumour [7,8]. In vitro enrichment for normal mammary stem cells in non-adherent, serum-free conditions was first reported by Dontu et al [9], varying the method pioneered for neural stem cell cultivation [10] In these conditions, most cells undergo anoikis whilst rare cells divide and generate spheroid structures mammospheres. Dontu demonstrated an increased frequency of bi-potent progenitors (defined by the ability to give rise to both luminal and myoepithelial compartments) in spheres compared to the original dissociated tissue, and that mammosphere immunophenotype was consistent with enrichment for dedifferentiated cells [9]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.