Abstract
A novel microfluidics-based bilayer device with a discrete parenchymal chamber modeled upon hepatic organ architecture is described. The microfluidics network was designed using computational models to provide appropriate flow behavior based on physiological data from human microvasculature. Patterned silicon wafer molds were used to generate films with the vascular-based microfluidics network design and parenchymal chamber by soft lithography. The assembled device harbors hepatocytes behind a nanoporous membrane that permits transport of metabolites and small proteins while protecting them from the effects of shear stress. The device can sustain both human hepatoma cells and primary rat hepatocytes by continuous in vitro perfusion of medium, allowing proliferation and maintaining hepatic functions such as serum protein synthesis and metabolism. The design and fabrication processes are scalable, enabling the device concept to serve as both a platform technology for drug discovery and toxicity, and for the continuing development of an improved liver-assist device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.