Abstract

PurposeLocking plate fixation of caprine tibial segmental defects is widely utilized for translational modeling of human osteopathology, and it is a useful research model in tissue engineering and orthopedic biomaterials research due to its inherent stability while maintaining unobstructed visualization of the gap defect and associated healing. However, research regarding surgical technique and long-term complications associated with this fixation method are lacking. The goal of this study was to assess the effects of surgeon-selected factors including locking plate length, plate positioning, and relative extent of tibial coverage on fixation failure, in the form of postoperative fracture.MethodsIn vitro, the effect of plate length was evaluated using single cycle compressive load to failure mechanical testing of locking plate fixations of caprine tibial gap defects. In vivo, effects of plate length, positioning, and relative tibial coverage were evaluated using data from a population of goats enrolled in ongoing orthopedic research which utilized locking plate fixation of 2 cm tibial diaphyseal segmental defects to evaluate bone healing over 3, 6, 9, and 12 months.ResultsIn vitro, no significant differences in maximum compressive load or total strain were noted between fixations using 14 cm locking plates and 18 cm locking plates. In vivo, both plate length and tibial coverage ratio were significantly associated with postoperative fixation failure. The incidence of any cortical fracture in goats stabilized with a 14 cm plate was 57%, as compared with 3% in goats stabilized with an 18 cm plate. Craniocaudal and mediolateral angular positioning variables were not significantly associated with fixation failure. Decreasing distance between the gap defect and the proximal screw of the distal bone segment was associated with increased incidence of fracture, suggesting an effect on proximodistal positioning on overall fixation stability.ConclusionsThis study emphasizes the differences between in vitro modeling and in vivo application of surgical fixation methods, and, based on the in vivo results, maximization of plate-to-tibia coverage is recommended when using locking plate fixation of the goat tibial segmental defect as a model in orthopedic research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.