Abstract

AbstractWith its high energy density, lithium metal battery technology encounters empirical challenges such as pulverization and dendrite growth. These can hinder the achievement of long lifespans. To address these challenges, it is important to optimize the lithium charge behavior. Here, the determination of the appropriate structural conditions and processes to prevent the accumulation of lithium ions on the lithium surface is discussed. Employing a hierarchical structure of polymeric macro/mesopores at the lithium interface, the favorable behavior of lithium ions and the reaction process is monitored. And the way of alloying process is proposed, revealing lithium ion accepted alloyable metals make to lithium‐metal intermetallic compounds. The well‐distributed alloyable metals in the unidimensional polymeric interface have sufficient capacity to accommodate and transport lithium ions. This emphasizes the need for innovative strategies to address irregular lithium nucleation and enhance lithium metal battery technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.