Abstract

It has been shown recently that African catfish ( Clarias gariepinus) spermatozoa possess relatively low ATP content and low adenylate energy charge (AEC). One of the possible explanations for this phenomenon is that the spermatozoa actively catabolize adenine nucleotides. A relatively high rate of such catabolism could then contribute to the low ATP concentration and low adenylate energy charge observed in the spermatozoa in vitro. To check this hypothesis, we investigated ATP content and adenine nucleotide catabolism in African catfish spermatozoa stored at 4 °C in the presence of glycine as an energetic substrate. Our results indicate that the storage of African catfish sperm at 4 °C in the presence of glycine causes time-dependent ATP depletion. In contrast to ATP, the AMP content increases significantly during the same period of sperm storage, while the ADP increases only slightly. Moreover, a significant increase of inosine and hypoxanthine content was also found. Hypoxanthine was accumulated in the storage medium, but xanthine was found neither in spermatozoa nor in the storage medium. It indicates that hypoxanthine is not converted to xanthine, probably due to lack of xanthine oxidase activity in catfish spermatozoa. Present results suggest that adenine nucleotides may be converted to hypoxanthine according to the following pathway: ATP→ADP→AMP (adenosine/IMP)→inosine→hypoxanthine. Moreover, hypoxanthine seems to be the end product of adenine nucleotide catabolism in African catfish spermatozoa. In conclusion, our results suggest that a relatively high rate of adenine nucleotide catabolism contributes to the low ATP concentration and low adenylate energy charge observed in African catfish spermatozoa in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.