Abstract

LY303,366 (LY) is a novel derivative of the echinocandin class of antifungal agents. The in vitro activities of LY, itraconazole (ITZ), and amphotericin B (AMB) were assessed against 60 Aspergillus isolates, including 35 isolates of A. fumigatus, eight isolates of A. terreus, eight isolates of A. flavus, eight isolates of A. niger and one isolate of A. nidulans. Four A. fumigatus isolates were resistant to ITZ. Susceptibility testing for all drugs was performed with a broth microdilution procedure. LY was tested in two media: antibiotic medium 3 (AM3) and Casitone with 2% glucose (CAS) with an inoculum of 2 x 10(3) spores/ml. ITZ and AMB were tested in RPMI 1640 with 2% glucose with an inoculum of 1 x 10(6) spores/ml. All tests were incubated at 37 degrees C for 48 h. A novel end point was used to determine a minimal effective concentration (MEC) for LY, i. e., almost complete inhibition of growth save a few tiny spherical colonies attached to the microplate. MICs were measured for ITZ and AMB with a no-growth end point. Ranges and geometric mean (GM) MECs were from 0.0018 to >0.5 and 0.0039 mg/liter and from 0.0018 to >0.5 and 0.008 mg/liter for LY in AM3 and LY in CAS, respectively. Differences between species were apparent, with A. flavus being significantly less susceptible to LY than any other species tested with both media (P </= 0.05). Ranges and GM MICs were from 0.125 to >16 and 0.7 mg/liter for ITZ and from 0.25 to 16 and 1.78 mg/liter for AMB. Minimal fungicidal concentrations (MFCs) were also determined for all drugs. GM MFCs were 0.018, 0.09, 19.76, and 12.64 mg/liter for LY in AM3, LY in CAS, ITZ, and AMB, respectively. LY in AM3 and LY in CAS were fungicidal for 86.7 and 68% of isolates, respectively (98% killing). In comparison, ITZ and AMB were fungicidal for 35 and 70% of isolates, respectively (99.99% killing). A reproducibility study was performed on 20% of the isolates. For 12 isolates retested, the MEC or MIC was the same or was within 1 dilution of the original value for 11, 11, 10, and 9 isolates for LY in AM3, LY in CAS, ITZ, and AMB, respectively. In conclusion, LY seems to be a promising antifungal agent with excellent in vitro activity against Aspergillus spp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call