Abstract

Staphylococcus aureus is a major human pathogen, implicated in both community and hospital acquired infections. The therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult because of multidrug resistance and strong biofilmforming properties. Schiff bases have attracted attention as promising antibacterial agents. In this study, we investigated the in vitro activity of taurine-5-bromosalicylaldehyde Schiff base (TBSSB) against MRSA. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) were determined using a microtiter broth dilution method. TBSSB effectively inhibited planktonic MRSA, with an MIC of 32 μg/ml. The time-kill curve confirmed that TBSSB exhibited bactericidal activity against MRSA. TBSSB was also found to significantly inhibit MRSA biofilm formation at 24 h, especially at 1×MIC and sub-MIC levels. Furthermore, scanning electron microscopy and transmission electron microscopy showed remarkable morphological and ultrastructural changes on the MRSA cell surface, due to exposure to TBSSB. This study indicated that TBSSB may be an effective bactericidal agent against MRSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call