Abstract

Limited data are available on susceptibilities of these organisms to some of the recently made accessible antimicrobial agents. The in vitro activities of newer antibiotics, such as, ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (CZA) along with some “older” antibiotics, for example fosfomycin (FOS) and colistin (CL) were determined against selected strains (resistant to ≥ 3 antimicrobial agents) of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Minimum inhibitory concentrations (MIC) were determined by Clinical and Laboratory Standards Institute microbroth dilution. 133 isolates: 46 E. coli, 39 K. pneumoniae, and 48 P. aeruginosa were tested. Results showed that E. coli isolates with MIC50/90, 0.5/1 μ g / mL for CL; 4/32 μ g / mL for FOS; 0.25/32 μ g / mL for C/T; 0.25/8 μ g / mL for CZA, exhibited susceptibility rates of 95.7%, 97.8%, 76.1%, and 89.1%, respectively. On the other hand, K. pneumoniae strains with MIC50/90, 0.5/1 μ g / mL for CL; 256/512 μ g / mL for FOS; 2/128 μ g / mL for C/T; 0.5/128 μ g / mL for CZA showed susceptibility rates of 92.3%, 7.7%, 51.3%, and 64.1%, respectively. P. aeruginosa isolates with MIC50/90, 1/1 μ g / mL for CL; 128/128 μ g / mL for C/T; 32/64 μ g / mL for CZA presented susceptibility rates of 97.9%, 33.3%, and 39.6%, respectively. Higher MICs were demonstrated against most of the antibiotics. However, CL retained efficacy at low MICs against most of the isolates tested.

Highlights

  • It all began with an increase in the prevalence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the 1980s and 1990s

  • Among E. coli strains, only one of them was found to be uniformly susceptible to all the antimicrobial agents tested

  • The present study demonstrates that older antimicrobial agents, such as CL and FOS, are still potent against selected Gram-negative bacilli (GNB) isolated from our hospital

Read more

Summary

Introduction

It all began with an increase in the prevalence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the 1980s and 1990s. Earlier to that almost all Enterobacteriaceae were susceptible to broad-spectrum antibiotics, including beta-lactam/beta-lactamase inhibitor combinations, oxyimino-cephalosporins (e.g., cefotaxime, ceftriaxone, and ceftazidime), aztreonam, and carbapenems [1]. Infections due to ESBL-producing Enterobacteriaceae (ESBL-PE) reached unprecedented levels in Europe [2,3,4,5] as well as in Asia [6]. These Gram-negative bacilli (GNB) are increasingly resistant to several antibiotics broad-spectrum cephalosporins, because of global spread of ESBL-PE as well as AmpC cephalosporinase producing.

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call