Abstract

Invasive candidiasis is a major hospital-acquired infection. Usually, echinocandins are considered first-line treatment. However, resistant phenotypes have emerged. Ibrexafungerp (IBX) is a new antifungal substance with potent anti-Candida activity. We challenged IBX with a library of 192 pheno-/genotypically echinocandin-resistant Candida isolates, focusing on the substance susceptibility, its activity on certain FKS hotspot (HS) mutated strains, and applying WTULs (wild-type upper limits). Therefore, a 9-year-old strain and patient data collection provided by the German National Reference Center for Invasive Fungal Infections were analyzed. Species identification was confirmed through ITS-sequencing. Molecular susceptibility testing was performed by sequencing HS of the FKS gene. Anidulafungin (AND) and IBX EUCAST-broth-microdilution was conducted. The four most common echinocandin-resistance mediating mutations were found in Candida glabrata [112/192 isolates; F659-(43×) and S663-(48×)] and Candida albicans [63/192 isolates; F641-(15×) and S645-(39×)]. Mutations at the HS-start sequence were associated with higher IBX MIC-values (F659 and F641 (MIC 50/90 mg/L: >4/>4 and 2/4 mg/L) in comparison to AND (F659 and F641 (MIC 50/90: 1/4 and 0.25/1 mg/L). MIC-values in HS-center mutations were almost equal [MIC50/90 in S663: 2/4 (AND and IBX); in S645: 0.5/1 (AND) and 0.25/1 (IBX) mg/L]. In total, 61 vs 78 of 192 echinocandin-resistant isolates may be classified as IBX wild type by applying WTULs, whereas the most prominent effect was seen in C. albicans [48% (30/63) vs 70% (44/63)]. IBX shows in vitro activity against echinocandin-resistant Candida and thus is an addition to the antifungal armory. However, our data suggest that this effect is more pronounced in C. albicans and strains harboring mutations, affecting the HS-center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call