Abstract

As antimicrobial resistance is on the rise, treating chronic wound infections is becoming more complex. The presence of biofilms in wound beds contributes to this challenge. Here, the activity of a novel hypochlorous acid (HOCl) producing electrochemical bandage (e-bandage) against monospecies and dual-species bacterial biofilms formed by bacteria commonly found in wound infections was assessed. The system was controlled by a wearable potentiostat powered by a 3V lithium-ion battery and maintaining a constant voltage of+1.5V Ag/AgCl, allowing continuous generation of HOCl. A total of 19 monospecies and 10 dual-species bacterial biofilms grown on polycarbonate membranes placed on tryptic soy agar (TSA) plates were used as wound biofilm models, with HOCl producing e-bandages placed over the biofilms. Viable cell counts were quantified after e-bandages were continuously polarized for 2, 4, 6, and 12 hours. Time-dependent reductions in colony forming units (CFUs) were observed for all studied isolates. After 12 hours, average CFU reductions of 7.75±1.37 and 7.74±0.60 log10 CFU/cm2 were observed for monospecies and dual-species biofilms, respectively. HOCl producing e-bandages reduce viable cell counts of in vitro monospecies and dual-species bacterial biofilms in a time-dependent manner in vitro. After 12 hours, >99.999% reduction in cell viability was observed for both monospecies and dual-species biofilms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call