Abstract

Hepadnaviruses have a complex replication cycle which includes reverse transcription of the pregenomic RNA. The initial step in this process in hepatitis B virus (HBV) requires the viral polymerase to engage a highly stable region of secondary structure within the pregenomic RNA termed the epsilon stem-loop. While reverse transcriptases belonging to the retrovirus family use a specific cellular tRNA as primer, HBV polymerase utilizes a tyrosine residue located within its own N terminus. Therefore, the first deoxyribonucleotide is covalently coupled to HBV polymerase prior to extension of the DNA strand by conventional reverse transcription. We have expressed HBV polymerase in a baculovirus and following purification have found it to be active with respect to protein-priming and reverse transcription of copurified RNA. Importantly, we found both of these processes to be critically dependent on the presence of the epsilon stem-loop. The metal ion preferences of HBV polymerase were also investigated for both the protein-priming and reverse transcription activities of this enzyme. Reverse transcription was dependent on magnesium, with an optimal concentration of 5 mM. However, protein-priming was strongly favoured by manganese ions and was optimal at a concentration of 1 mM. Thus, using manganese as sole source of metal ions our activity assay is restricted to the protein-priming event and will allow the search for novel antivirals specifically blocking this unique mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.