Abstract
BackgroundOn the borders of Thailand, Plasmodium falciparum has become resistant to nearly all available drugs, and there is an urgent need to find new antimalarial drugs or drug combinations. Ferroquine (SSR97193) is a new 4-aminoquinoline antimalarial active against chloroquine resistant and sensitive P. falciparum strains in vivo and in vitro. This antimalarial organic iron complex (a ferrocenyl group has been associated with chloroquine) is meant to use the affinity of Plasmodium for iron to increase the probability for encountering the anti-malarial molecule.The aim of the present study was to investigate the activity of ferroquine against P. falciparum isolates from an area with a known high multi-drug resistance rate.MethodsParasite isolates were obtained from patients with acute falciparum malaria attending the clinics of SMRU. In vitro cultures of these isolates were set-up in the SMRU-laboratory on pre-dosed drug plates, and grown in culture for 42 hours. Parasite growth was assessed by the double-site enzyme-linked pLDH immunodetection (DELI) assay.ResultsSixty-five P. falciparum isolates were successfully grown in culture. The ferroquine mean IC50 (95% CI) was 9.3 nM (95% C.I.: 8.7 – 10.0). The mean IC50 value for the principal metabolite of ferroquin, SR97213A, was 37.0 nM (95% C.I.: 34.3 – 39.9), which is four times less active than ferroquine. The isolates in this study were highly multi-drug resistant but ferroquine was more active than chloroquine, quinine, mefloquine and piperaquine. Only artesunate was more active than ferroquine. Weak but significant correlations were found between ferroquine and its principal metabolite (r2 = 0.4288), chloroquine (r2 = 0.1107) and lumefantrine (r2 = 0.2364).ConclusionThe results presented in this study demonstrate that the new ferroquine compound SSR97193 has high anti-malarial activity in vitro against multi-drug resistant P. falciparum.
Highlights
On the borders of Thailand, Plasmodium falciparum has become resistant to most available drugs, and there is an urgent need to find new antimalarial drugs or drug combinations
Sixty-five P. falciparum isolates were successfully grown in culture
The results presented in this study demonstrate that the new ferroquine compound SSR97193 has high anti-malarial activity in vitro against multi-drug resistant P. falciparum
Summary
On the borders of Thailand, Plasmodium falciparum has become resistant to most available drugs, and there is an urgent need to find new antimalarial drugs or drug combinations. Ferroquine (SSR97193) is a new 4-aminoquinoline antimalarial active against chloroquine resistant and sensitive P. falciparum strains in vivo and in vitro. This antimalarial organic iron complex (a ferrocenyl group has been associated with chloroquine) is meant to use the affinity of Plasmodium for iron to increase the probability for encountering the anti-malarial molecule. The aim of the present study was to investigate the activity of ferroquine against P. falciparum isolates from an area with a known high multi-drug resistance rate
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.