Abstract

Multidrug-resistant (MDR) Gram-negative bacteria are responsible for the majority of healthcare-associated infections and pose a serious threat as they complicate and prolong clinical care. A novel cephalosporin-β-lactamase-inhibitor combination, ceftolozane-tazobactam (C/T) was introduced in 2014, which improved the treatment of MDR pathogens. This study aimed to evaluate the activity of C/T against Escherichia coli (n = 100), Klebsiella pneumoniae (n = 100), and Pseudomonas aeruginosa (n = 100) blood culture isolates in South Africa (SA). Isolates were sequentially selected (2010 to 2020) from the Group for Enteric, Respiratory, and Meningeal Diseases Surveillance (GERMS) programme in SA. Organism identification was performed using the matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) instrument (Microflex, Bruker Daltonics, Bremen, Germany), and antibiotic susceptibility was performed using the Sensititre instrument (Trek Diagnostic Systems, East Grinstead, UK). C/T resistance was reported in 16 E. coli, 28 K. pneumoniae and 13 P. aeruginosa isolates. Fifty percent of the C/T resistant isolates were subjected to whole-genome sequencing (WGS). According to the whole genome multilocus sequence typing (MLST) analysis, the E. coli isolates (n = 8) belonged to sequence type (ST)10, ST131, ST405, and ST410, the K. pneumoniae isolates (n = 14) belonged to ST1, ST37, ST73, ST101, ST231, ST307, ST336 and ST6065 (novel ST), and the P. aeruginosa isolates (n = 7) belonged to ST111, ST233, ST273, and ST815. The WGS data also showed that all the E. coli isolates harboured aminoglycoside (aph (3'')-Ib, aph (6)-Id), macrolide (mdfA, mphA), and sulphonamide (sul2) antibiotic resistance genes, all the K. pneumoniae isolates harboured β-lactam (blaCTX-M-15), and sulphonamide (sul2) antibiotic resistance genes, and all the P. aeruginosa isolates harboured aminoglycoside (aph (3')-IIb), β-lactam (PAO), fosfomycin (fosA), phenicol (catB7), quinolone (crpP), and disinfectant (qacE) antibiotic resistance genes. It is evident that E. coli, K. pneumoniae and P. aeruginosa can adapt pre-existing resistance mechanisms to resist newer β-lactam molecules and inhibitors, since these isolates were not exposed to ceftolozane-tazobactam previously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call