Abstract

Objectives: Infections caused by drug-resistant Enterobacterales including those producing metallo-β-lactamases (MBLs) are particularly challenging due to limited therapeutic options. The drug combination aztreonam/avibactam (ATM-AVI) is under clinical development for treating serious infections caused by these strains. This study assessed the in vitro activity of ATM-AVI against Enterobacterales isolates collected globally in the ATLAS surveillance programme in 2019. Methods: Clinical isolates of Enterobacterales (N = 18 713) including Citrobacter freundii, Citrobacter koseri, Enterobacter cloacae complex, Escherichia coli, Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, and Serratia marcescens collected from 232 sites in 2019 were analysed. Antimicrobial susceptibility testing was performed by reference broth microdilution. A pharmacokinetic/pharmacodynamic based breakpoint of 8 mg/L was considered for ATM-AVI activity. Results: ATM-AVI demonstrated potent antimicrobial activity against all Enterobacterales, with 99.9% isolates inhibited at MIC ≤8 mg/L (MIC90, 0.25 mg/L). MICs ≤8 mg/L (>99.0%) were noted for ATM-AVI across regions worldwide. Among other antimicrobials, amikacin, colistin, imipenem, meropenem, and tigecycline were also active (susceptibility >85.0%) against Enterobacterales. Activity of ATM-AVI was sustained against multidrug-resistant, extended-spectrum β-lactamase producing, and carbapenem-resistant isolates (susceptibility >99%; MIC90, 0.25–0.5 mg/L). Importantly, potent activity for ATM-AVI (>99.0%; MIC90, 0.5 mg/L) was noted among MBL-positive isolates and those producing other carbapenemases, such as KPC and OXA-48. Conclusion: Our results demonstrated that ATM-AVI was highly active against a recent collection of Enterobacterales isolates, including those producing MBLs either alone or in combination with other carbapenemases. Thus, ATM-AVI represents a potential option for treating infections caused by antibiotic-resistant Enterobacterales including MBL-producing strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.