Abstract

Background:Ca2+ signaling pathway is suggested to play an essential role in mediating oocyte maturation.Aims:The aim of this study was to evaluate intracellular Ca2+ of resistant immature oocytes that failed to resume meiosis following subsequent in vitro culture reach metaphase II after calcium ionophore A23187 activation.Settings and Design:This in vitro analytical experimental study was conducted at Animal Science Laboratory of Indonesian Medical Education and Research Institute (IMERI), Human Reproductive Infertility and Family Planning of IMERI, and Electrophysiology Imaging of Terpadu Laboratory, Faculty of Medicine, University of Indonesia.Methods:A total of 308 oocytes classed as resistant immature following in vitro culture were randomly allocated to control (n = 113) and treatment groups (n = 195). The oocyte activation group was exposed to A23187 solution for 15 min and then washed extensively. Maturation was evaluated by observing the first polar body extrusion 20‒24 h after A23187 exposure. Ca2+ imaging was conducted using a confocal laser scanning microscope to identify the dynamic of Ca2+ response.Statistical Analysis:SPSS 20, Chi-square, and Mann–Whitney U-test were used in this study.Results:Activation of resistant immature oocytes with A23187 significantly increased the number of oocyte maturation compared with the control group (P < 0.001). Furthermore, fluorescent intensity measurements exhibited a significant increase in the germinal vesicle stage when activated (P = 0.005), as well as the metaphase I stage, even though differences were not significant (P = 0.146).Conclusion:Artificial activation of resistant immature oocyte using chemical A23187/calcimycin was adequate to initiate meiosis progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.