Abstract

Using in vitro motility assays, we examined the sliding velocity of actin filaments generated by pairwise mixings of six different types of actively cycling myosins. In isolation, the six myosins translocated actin filaments at differing velocities. We found that only small proportions of a more slowly translating myosin type could significantly inhibit the sliding velocity generated by a myosin type that translocated filaments rapidly. In other experiments, the addition of noncycling, unphosphorylated smooth and nonmuscle myosin to actively translating myosin also inhibited the rapid sliding velocity, but to a significantly reduced extent. The data were analyzed in terms of a model derived from the original working cross-bridge model of A.F. Huxley. We found that the inhibition of rapidly translating myosins by slowly cycling was primarily dependent upon only a single parameter, the cross-bridge detachment rate at the end of the working powerstroke. In contrast, the inhibition induced by the presence of noncycling, unphosphorylated myosins required a change in another parameter, the transition rate from the weakly attached actomyosin state to the strongly attached state at the beginning of the cross-bridge power stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.