Abstract

Histone acetyltransferases CBP, PCAF, and Tip60 have been tested for their ability to in vitro acetylate HMGB-1 and -2 proteins and their truncated forms lacking the C-terminal tail. It was found that these proteins were substrates for CBP only. Analyses of modified proteins by electrophoresis, amino acid sequencing, and mass spectrometry showed that full-length HMGB-1 and -2 were monoacetylated at Lys2. Removal of the C terminus resulted in (i) an increased incorporation of radiolabeled acetate within the proteins to a level close to that observed with histones H3/H4 and (ii) creation of a novel target site at Lys81. Acetylated and nonmodified HMGB-1 and -2 protein lacking the acidic tail were compared relative to their binding affinity to distorted DNA and the ability to bend linear DNA. Both proteins showed similar affinities to cisplatin-damaged DNA; the acetylated protein, however, was 3-fold more effective in inducing ligase-mediated circularization of a 111-bp DNA fragment. The alterations in the acetylation pattern of HMGB-1 and -2 upon removal of the C-terminal tail are regarded as a means by which the acidic domain modulates some properties of these proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call