Abstract

Enzymes have evolved their ability to use binding energies for catalysis by increasing the affinity for the transition state of a reaction and decreasing the affinity for the ground state. To evolve abzymes toward higher catalytic activity, we have reconstructed an enzyme-evolutionary process in vitro. Thus, a phage-displayed combinatorial library from a hydrolytic abzyme, 6D9, generated by the conventional in vivo method with immunization of the transition-state analog (TSA), was screened against a newly devised TSA to optimize the differential affinity for the transition state relative to the ground state. The library format successfully afforded evolved variants with 6- to 20-fold increases in activity (kcat) as compared with 6D9. Structural analysis revealed an advantage of the in vitro evolution over the in vivo evolution: an induced catalytic residue in the evolved abzyme arises from double mutations in one codon, which rarely occur in somatic hypermutation in the immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.