Abstract

Porphyrin molecules offer a very stable molecular environment for the incorporation of numerous metal ions inside their cavity, which enables a plethora of applications. The fabrication and characterization of surface confined metal–organic architectures by employing porphyrins are of particular interest. Here, we report on a comprehensive study of chemical vapor deposition (CVD) of triruthenium dodecacarbonyl as metal precursor for the on-surface metalation of different porphyrin species with Ru under ultrahigh vacuum conditions. By employing synchrotron radiation X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and scanning tunneling microscopy (STM), we investigated the metalation process and particularly the role of the support: the close packed Ag(111) surface. It was found that the surface is active in the metalation process under the employed conditions: it decomposes the metal precursor and delivers metal centers to the porphyrin macrocycles. The generality of the metalation process is illustrated for tetraphenylporphyrin, its high temperature derivatives, and porphine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call