Abstract

Over the last 15 years there has been considerable interest in the possibility of quantum-gravity-induced in-vacuo dispersion, the possibility that spacetime itself might behave essentially like a dispersive medium for particle propagation. Two very recent studies have exposed what might be in-vacuo dispersion features for GRB (gamma-ray-burst) neutrinos of energy in the range of 100 TeV and for GRB photons with energy in the range of 10 GeV. We here show that these two features are roughly compatible with a description such that the same effects apply over 4 orders of magnitude in energy. We also characterize quantitatively how rare it would be for such features to arise accidentally, as a result of (still unknown) aspects of the mechanisms producing photons at GRBs or as a result of background neutrinos accidentally fitting the profile of a GRB neutrino affected by in-vacuo dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.