Abstract

BackgroundMaternal smoking in utero has been associated with adverse health outcomes including lower respiratory tract infections in infants and children, but the mechanisms underlying these associations continue to be investigated. We hypothesized that nicotine plays a significant role in mediating the effects of maternal tobacco smoke on neonatal alveolar macrophage (AM) function, the resident immune cell in the neonatal lung.MethodsPrimary AMs were isolated at postnatal day 7 from a murine model of in utero nicotine exposure. The murine AM cell line MH-S was used for additional in vitro studies.ResultsIn utero nicotine increased IL-13 and transforming growth factor beta one (TGFβ1) in the neonatal lung. Nicotine-exposed AMs demonstrated increased TGFβ1 and increased markers of alternative activation with diminished phagocytic function. However, AMs from mice deficient in the α7 nicotinic acetylcholine receptor (α7 nAChR) had less TGFβ1, reduced alternative activation and improved phagocytic functioning despite similar in utero nicotine exposure.ConclusionIn utero nicotine exposure, mediated in part via the α7 nAChR, may increase the risk of lower respiratory tract infections in neonates by changing the resting state of AM towards alternative activation. These findings have important implications for immune responses in the nicotine-exposed neonatal lung.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call