Abstract

BackgroundThe development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. Thus, we investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings.MethodsPregnant female Sprague dawley rats were fed with HFD alone, HFD + GBR or HFD + OE (100 or 200 mg/kg/day) throughout pregnancy and lactation. Their offsprings were weaned at 4 weeks post-delivery and were followed up until 8 weeks. Serum levels of adipokines were measured in dams and their offsprings, and global DNA methylation and histone acetylation patterns were estimated from the liver.ResultsThe dams and offsprings of the GBR and OE groups had lower weight gain, glycemic response, 8-Iso prostaglandin, retinol binding protein 4 and fasting insulin, and elevated adiponectin levels compared with the HFD group. Fasting leptin levels were lower only in the GBR groups. Hepatic global DNA methylation was lower in the GBR groups while hepatic H4 acetylation was lower in both GBR and OE dams. In the offsprings, DNA methylation and H4 acetylation were only lower in the OE group. However, dams and offsprings of the GBR and OE groups had higher hepatic H3 acetylation.ConclusionsGBR and OE can be used as functional ingredients for the amelioration of HFD-induced epigeneticallymediated insulin resistance.

Highlights

  • The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences

  • Excessive weight can lead to various metabolic perturbations with epigenetic implications on the risk of metabolic disease in offsprings [9]

  • In the offsprings (Fig. 2b), all the groups peaked at 30 min after oral administration except the high fat diet (HFD) group, which peaked at 60 min (P = 0.001, F = 6.44) and was significantly higher than the rest of the groups at 90 (P = 0.00001, F = 71.3) and 120 min (P = 0.00001, F = 38.23)

Read more

Summary

Introduction

The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. We investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings. Diet is an important environmental factor that could influence the risk of insulin sensitivity, and Adamu et al BMC Complementary and Alternative Medicine (2017) 17:67. It was reported to be effective in reducing weight [8], which is an important determinant of metabolic status. Excessive weight can lead to various metabolic perturbations with epigenetic implications on the risk of metabolic disease in offsprings [9]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.