Abstract
Particulate matter (PM2.5) exposure is reported to have deleterious effects on health. Maternal PM2.5 exposure has been confirmed to damage the growth of somatic cells and enhance the incidence of chronic respiratory diseases in children. Here we aim to investigate the impact of in utero PM2.5 exposure on early birth weight and postnatal lung development. Pregnant Sprague-Dawley rats were administered PM2.5 (0.1, 0.5, 2.5, or 7.5 mg/kg) intraperitoneally every 3 days until birth. Maternal and birth outcomes and somatic growth were monitored. Lungs were collected on PND1 (where PND = postnatal day) and PND28; the lung wet-to-dry weight ratio (W/D) was analyzed, and reactive oxygen species (ROS) levels were measured. Expression of Toll-like receptor 4 (TLR4) and NF-κB were evaluated by Western blotting and quantitative RT-PCR. There were no significant intergroup differences for maternal outcomes; however, offspring exposed in utero to 2.5 and 7.5 mg/kg PM2.5 were significantly smaller in litter weight than the controls. In utero exposure to 2.5 and 7.5 mg/kg PM2.5 led to lower body weight after birth and disrupted lung development during infancy. ROS levels were significantly increased in the 7.5 mg/kg PM2.5 group. PM2.5-treated rats showed upregulated pulmonary expression of TLR4 and NF-κB. Maternal PM2.5 exposure enhances the risk of low birth weight and affects lung alveolar development. The underlying molecular mechanisms may involve TLR4/NF-κB signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.