Abstract
The aim of this study is to show the results of modification of polyethersulfone membranes with photocatalytic nanoparticles TiO 2 . Titanium(IV) oxide was used because of its non-toxicity and cheapness, moreover, its immobilization on the surface allows simultaneous separation and decomposition of pollutants. TiO 2 nanoparticles were immobilized on the surface of polyethersulfone membranes by “layer-by-layer” method with natural polysaccharides as polyanions and polyethylenimine as polycation. Membrane modification was confirmed by zeta-potential dependence on pH. Membranes modified with TiO 2 nanoparticles had an isoelectric point in the pH range of 5.2–5.8 which corresponds to pI of titanium oxide(IV). Photocatalytic properties of modified membranes were analyzed in a model reaction of Rhodamine G decomposition. Experimental data showed that the decomposition of Rhodamine G occurred at the reaction of a pseudo-first order. Low photocatalytic activity (dye half-life (t 1/2 =ln2/k) was only 17–40 hours) in the decomposition of rhodamine G is caused by a small amount of titanium oxide nanoparticles adsorbed on the surface. However, it is possible to assume that photocatalysis will continue in membranous layer, providing self-cleaning membrane. Membranes exhibited high self-cleaning ability during bovine serum albumin and milk nanofiltration. The presented results show that polyethersulfone membranes gain antifouling and self-cleaning properties after modification with polyelectrolyte complexes and titanium(IV) oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.