Abstract

Merging galaxy clusters have been touted as one of the best probes for constraining self-interacting dark matter, but few simulations exist to back up this claim. We simulate equal mass mergers of 10$^{15}$ M$_\odot$ halos, like the El Gordo and Sausage clusters, with cosmologically-motivated halo and merger parameters, and with velocity-independent dark-matter self-interactions. Although the standard lore for merging clusters is that self-interactions lead to large separations between the galaxy and dark-matter distributions, we find that maximal galaxy-dark matter offsets of $\lesssim~20$~kpc form for a self-interaction cross section of $\sigma_\text{SI}/m_\chi$ = 1 cm$^2$/g. This is an order of magnitude smaller than those measured in observed equal mass and near equal mass mergers, and is likely to be even smaller for lower-mass systems. While competitive cross-section constraints are thus unlikely to emerge from offsets, we find other signatures of self-interactions which are more promising. Intriguingly, we find that after dark matter halos coalesce, the collisionless galaxies (and especially the Brightest Cluster Galaxy [BGC]) oscillate around the center of the merger remnant on stable orbits of 100 kpc for $\sigma_\text{SI}/m_\chi = 1$~cm$^2$/g for at least several Gyr, well after the clusters have relaxed. If BCG miscentering in relaxed clusters remains a robust prediction of SIDM under the addition of gas physics, substructure, merger mass ratios (e.g., 10:1 like the Bullet Cluster), and complex cosmological merger histories, the observed BCG offsets may constrain $\sigma_\text{SI}/m_\chi \lesssim$ 0.1 cm$^2$/g---the tightest constraint yet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.