Abstract
A real projective orbifold has a radial end if a neighborhood of the end is foliated by projective geodesics that develop into geodesics ending at a common point. It has a totally geodesic end if the end can be completed to have the totally geodesic boundary. The purpose of this paper is to announce some partial results. A real projective structure sometimes admits deformations to parameters of real projective structures. We will prove a homeomorphism between the deformation space of convex real projective structures on an orbifold $\mathcal{O}$ with radial or totally geodesic ends with various conditions with the union of open subspaces of strata of the corresponding subset of \[ Hom(\pi_{1}(\mathcal{O}), PGL(n+1, \mathbb{R}))/PGL(n+1, \mathbb{R}).\] Lastly, we will talk about the openness and closedness of the properly (resp. strictly) convex real projective structures on a class of orbifold with generalized admissible ends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.