Abstract
Bacteria can not only encounter carbon monoxide (CO) in their habitats but also produce the gas endogenously. Bacterial respiratory oxidases, thus, represent possible targets for CO. Accordingly, host macrophages were proposed to produce CO and release it into the surrounding microenvironment to sense viable bacteria through a mechanism that in Escherichia (E.) coli was suggested to involve the targeting of a bd-type respiratory oxidase by CO. The aerobic respiratory chain of E. coli possesses three terminal quinol:O2-oxidoreductases: the heme-copper oxidase bo3 and two copper-lacking bd-type oxidases, bd-I and bd-II. Heme-copper and bd-type oxidases differ in the mechanism and efficiency of proton motive force generation and in resistance to oxidative and nitrosative stress, cyanide and hydrogen sulfide. Here, we investigated at varied O2 concentrations the effect of CO gas on the O2 reductase activity of the purified cytochromes bo3, bd-I and bd-II of E. coli. We found that CO, in competition with O2, reversibly inhibits the three enzymes. The inhibition constants Ki for the bo3, bd-I and bd-II oxidases are 2.4 ± 0.3, 0.04 ± 0.01 and 0.2 ± 0.1 μM CO, respectively. Thus, in E. coli, bd-type oxidases are more sensitive to CO inhibition than the heme-copper cytochrome bo3. The possible physiological consequences of this finding are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.