Abstract

Radiation has long been the standard of care for many types of cancer. It is employed to locally eradicate tumor cells as well as alter tumor stroma with either curative or palliative intent. Radiation-induced cell damage is an immunologically active process in which danger signals are released that stimulate immune cells to phagocytose and present locally released tumor-associated antigens (TAAs). Recent studies have indicated that radiotherapy can also alter the phenotype of cancer cells that remain after treatment. These cells upregulate TAAs as well as markers, including major histocompatibility complex and costimulatory molecules, that make them much more immunostimulatory. As our understanding of the immunomodulatory effects of radiation has improved, interest in combining this type of therapy with immune-based therapies for the treatment of cancer has grown. Therapeutic cancer vaccines have been shown to initiate the dynamic process of host immune system activation, culminating in the recognition of host cancer cells as foreign. The environment created after radiotherapy can be exploited by active therapeutic cancer vaccines in order to achieve further, more robust immune system activation. This review highlights preclinical studies that have examined the alteration of the tumor microenvironment with regard to immunostimulatory molecules following different types of radiotherapy, including external beam radiation, radiolabeled monoclonal antibodies, bone-seeking radionuclides, and brachytherapy. We also emphasize how combination therapy with a cancer vaccine can exploit these changes to achieve improved therapeutic benefit. Lastly, we describe how these laboratory findings are translating into clinical benefit for patients undergoing combined radiotherapy and cancer vaccination.

Highlights

  • RATIONALE FOR COMBINING RADIATION AND IMMUNOTHERAPY Radiation therapy (RT) is an integral component of cancer care

  • The most common form of RT, external beam radiation therapy (EBRT), is conventionally administered in fractionated doses, it is unclear what the optimal dose schedule for EBRT should be when it is combined with immunotherapy

  • Mice bearing OVA-expressing B16-F0 tumors that were treated with a total dose of 15 Gy of localized RT delivered in a single fraction had enhanced APC trafficking to draining lymph nodes and greater capability to present tumor antigens compared to non-irradiated mice

Read more

Summary

Introduction

RATIONALE FOR COMBINING RADIATION AND IMMUNOTHERAPY Radiation therapy (RT) is an integral component of cancer care. These data indicate that RT effectively stimulates immune responses by increasing the production of inflammatory cytokines, causing the release of large amounts of tumor antigen, enhancing antigen processing and presentation, improving T cell migration to sites of disease, and activating tumor-specific CTLs (Figure 1). PRECLINICAL EVIDENCE OF SYNERGY WHEN RADIATION AND IMMUNOTHERAPY ARE COMBINED Several recent studies have indicated that radiation-induced cell death is an immunologically active process.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call