Abstract

Antibody mediated rejection (ABMR) is a major barrier to long-term kidney graft survival. Dysregulated donor-specific antibody (DSA) responses are induced in CCR5-deficient mice transplanted with complete major histocompatibility complex (MHC)-mismatched kidney allografts, and natural killer (NK) cells play a critical role in graft injury and rejection. We investigated the consequence of high DSA titers on kidney graft outcomes in the presence or absence of NK cell activation within the graft. Equivalent serum DSA titers were induced in CCR5-deficient B6 recipients of complete MHC mismatched A/J allografts and semi-allogeneic (A/J x B6) F1 kidney grafts, peaking by day 14 post-transplant. A/J allografts were rejected between days 16-28, whereas B6 isografts and semi-allogeneic grafts survived past day 65. On day 7 post-transplant, NK cell infiltration into A/J allografts was composed of distinct populations expressing high and low levels of the surface antigen NK1.1, with NK1.1low cells reflecting the highest level of activation. These NK cell populations increased with time post-transplant. In contrast, NK cell infiltration into semi-allogeneic grafts on day 7 was composed entirely of NK1.1high cells that decreased thereafter. On day 65 post-transplant the semi-allogeneic grafts had severe interstitial fibrosis, glomerulopathy, and arteriopathy, accompanied by expression of pro-fibrogenic genes. These results suggest that NK cells synergize with DSA to cause acute kidney allograft rejection, whereas high DSA titers in the absence of NKcell activation cannot provoke acute ABMR but instead induce the indolent development of interstitial fibrosis and glomerular injury that leads to late graft failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call