Abstract
Online, droplet-based in-source chemical derivatization is accomplished using a coaxial-flow contained-electrospray ionization (contained-ESI) source to enhance sensitivity for the mass spectrometric analysis of saccharides. Derivatization is completed in microseconds by exploiting the reaction rate acceleration afforded by electrospray microdroplets. Significant improvements in method sensitivity are realized with minimal sample preparation and few resources when compared to traditional benchtop derivatizations. For this work, the formation of easily ionizable phenylboronate ester derivatives of several mono-, di-, and oligosaccharides is achieved. Various reaction parameters including concentration and pH were evaluated, and a Design of Experiments approach was used to optimize ion source parameters. Signal enhancements of greater than two orders of magnitude were observed for many mono- and disaccharides using in-source phenylboronic acid derivatization, resulting in parts-per-trillion (picomolar) limits of detection. In addition, amino sugars such as glucosamine, which do not ionize in negative mode, were detected at low parts-per-billion concentrations, and isobaric sugars such as lactose and sucrose were easily distinguished. The new in-source derivatization approach can be employed to expand the utility of ESI-MS analysis for compounds that historically experience limited sensitivity and detectability, while avoiding resource-intensive, bulk-phase derivatization procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.