Abstract

The structure of laser-shock-compressed polycrystalline iron was probed using in situ x-ray diffraction over a pressure range spanning the $\ensuremath{\alpha}$-$\ensuremath{\epsilon}$ phase transition. Measurements were also made of the $c/a$ ratio in the $\ensuremath{\epsilon}$ phase, which, in contrast with previous in situ x-ray diffraction experiments performed on single crystals and large-scale molecular dynamics (MD) simulations are close to those found in high-pressure diamond anvil cell experiments. This is consistent with the observation that significant plastic flow occurs within the nanosecond time scale of the experiment. Furthermore, within the sensitivity of the measurement technique, the fcc phase that had been predicted by MD simulations was not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.