Abstract

Lithium ion cells comprising actual components of positive electrodes (LiCoO2, LiNixCoyAlz, and LiMn2O4) and negative electrodes (graphite and hard carbon) were assembled for in situ7Li nuclear magnetic resonance (NMR) experiments. The 7Li NMR measurements of the cells revealed a “relaxation effect” after overcharging: a decrease of the signal assigned to Li metal deposited on the negative electrode surface by overcharging. The reduction of the Li metal signal was inversely proportional to the increase of the signal of lithium stored in carbon. Therefore, the effect was ascribed to absorption of deposited lithium into the carbon of negative electrodes. The effect, which occurred rapidly in a few hours, reached an equilibrium state at 8–15h. The slight shift of deposited metal suggests that dendritic Li easily re-dissolved, although larger Li particles remained. A hard carbon electrode has a greater effect of Li metal relaxation than graphite electrodes do, which is explainable by the bufferable structure of the carbon. Results are expected to be important for the discussion of the state of lithium, and for safer battery design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.