Abstract
We present high-pressure x-ray photoelectron spectroscopy (HP-XPS) and first-principles kinetic Monte Carlo study addressing the nature of the active surface in CO oxidation over Pd(100). Simultaneously measuring the chemical composition at the surface and in the near-surface gas phase, we reveal both O-covered pristine Pd(100) and a surface oxide as stable, highly active phases in the near-ambient regime accessible to HP-XPS. Surprisingly, no adsorbed CO can be detected during high CO(2) production rates, which can be explained by a combination of a remarkably short residence time of the CO molecule on the surface and mass-transfer limitations in the present setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.