Abstract

Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.