Abstract
AbstractBeams of nitrogen and hydrogen radicals were investigated as surface pre-treatment and process enhancement techniques for atomic layer deposition (ALD) of tantalum nitride barrier layer on a dense organosilicate (OSG) low k film. In-situ x-ray photoelectron spectroscopy (XPS) studies of the evolution of the low k surface chemistry revealed an initial transient growth region controlled mainly by the substrate surface chemistry. Pre-treatment of the low k surface with radical beams, particularly with nitrogen radicals, was found to enhance significantly the chemisorption of the TaCl5 precursor on the OSG surfaces. The enhancement was attributed to the dissociation of the weakly bonded methyl groups from the low k surface followed by nitridation with the nitrogen radicals. In the subsequent linear growth region, atomic hydrogen species was able to reduce the chlorine content under appropriate temperature and with sufficient purge. The role of the atomic hydrogen in this process enhancement is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.