Abstract

Future technologies are likely to exploit flexible heterostructures exhibiting multifunctional properties constructed from multiple materials. One technique for the synthesis of such systems relies on remote epitaxy, a method employing graphene as a sacrificial layer between a crystalline substrate and an epitaxial film. The technique can be used to create single crystal heterostructures comprised of stacked epitaxial films, their properties optimized by minimizing incompatibilities between the different materials. Details regarding nucleation and growth via remote epitaxy remain unknown, however, due to the many difficulties in studying synthesis in the growth environment with atomic-scale resolution. Here, we describe an in situ synchrotron x-ray investigation of complex oxide thin film growth on graphene by molecular beam epitaxy. Phase retrieval methods were used to reconstruct the electron density profiles from x-ray crystal truncation rods measured under different growth conditions. Our in situ observations combined with post-growth spectroscopy provide a number of key insights regarding graphene in the synthesis environment and the resulting effects on the complex oxide/graphene heterostructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call